Classification and design strategies of polysaccharide-based nano-nutrient delivery systems for enhanced bioactivity and targeted delivery: A review.

School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China. College of Sports and Human Sciences, Harbin Sport University, Harbin 150008, China. School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; Chongqing Research Institute, Harbin Institute of Technology, Chongqing 401135, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China. Electronic address: yangxin@hit.edu.cn.

International journal of biological macromolecules. 2024;(Pt 2):128440
Full text from:

Other resources

Abstract

Since many nutrients are highly sensitive, they cannot be absorbed and utilized efficiently by the body. Using nano-delivery systems to encapsulate nutrients is an effective method of solving the problems associated with the application of nutrients at this stage. Polysaccharides, as natural biomaterials, have a unique chemical structure, ideal biocompatibility, biodegradability and low immunogenicity. This makes polysaccharides powerful carriers that can enhance the biological activity of nutrients. However, the true role of polysaccharide-based delivery systems requires an in-depth understanding of the structural and physicochemical characteristics of polysaccharide-based nanodelivery systems, as well as effective modulation of the intestinal delivery mechanism and the latest advances in nano-encapsulation. This review provides an overview of polysaccharide-based nano-delivery systems dependent on different carrier types, emphasizing recent advances in the application of polysaccharides, a biocomposite material designed for nutrient delivery systems. Strategies for polysaccharide-based nano-delivery systems to enhance the bioavailability of orally administered nutrients from the perspective of the intestinal absorption barrier are presented. Characterization methods for polysaccharide-based nano-delivery systems are presented as well as an explanation of the formation mechanisms behind nano-delivery systems from the perspective of molecular forces. Finally, we discussed the challenges currently facing polysaccharide-based nano-delivery systems as well as possible future directions for the future.

Methodological quality

Publication Type : Review

Metadata